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Abs t rac t  

An algebraic treatment of three-dimensional problems with arbitrary central field of  force 

is proposed in terms of  SU(3). 

1. In t roduc t ion  

Description of physical problems in a group theoretical language means 
that a complete set of commuting physical observables is formed of group 
theoretical independent quantities. These quantities should be connected 
with dynamics of motion in a unique way. 

tn this article the class of three-dimensional problems with arbitrary central 
dynamics is considered (bounded motion). The description of the correspond- 
ing problems in the terms of the 0(4) group has been considered previously 
by Serebrennikov and Shabad (1973), Serebrennikov (1974), and Serebrennikov 
e t  al. (1975). The approach to the SU(3) treatment is in fact the same. The 
description in terms of the SU(3) group is of special interest, because SU(3) is 
a symmetry group of the isotropic oscillator (Jauch and Hill, 1940; Demkov, 
1953; Baker, 1956) and widely used in hadronic systematics. 

We start the investigation in frames of the classical mechanics and shall 
deal with the Poisson brackets algebra of generators of infinitesimal canonical 
transformations. 

We take the Casimir invariant ~ G of the SU(3) group, the orbital momentum 
squared L 2 [which is the Casimir invariant of the 0(3) subgroup of the SU(3)] 
and the orbital momentum component l 3 for the above independent group 

t In the problem under consideration the two Casimir invariants of  the SU(3) group 
are interrelated (see section 3). That is why we refer only to one of  them.  
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quantities. They all commute among themselves and may be used as the com- 
plete set of independent integrals of motion. Then the Hamiltonian is the func- 
tion of G, L 2 (the t 3 dependence is exluded by the central symmetry) (cf. 
Serebrennikov and Shabad, 1973). 

The establishment of the connection with the dynamics of the motion con- 
sists in finding this function and the SU(3) generators as explicit and unique 
functions of the position r and momentum p. The transition from the 
Hamiltonian H = ~p2 + V(r) to H =H(G,L 2) has some advantages. 

Firstly, the function H of the noncommuting variables r and p is replaced 
by one of the commuting group variables G, L 2 . Secondly, the functions G and 
L 2 when substituted for by the operators have a standard set of  eigenvalues. 

The quantization that naturally follows from the given group theoretical 
treatment consists in replacing the group variables (and not r and p) by 
operators. 

The calculation of the spectrum is reduced to the set of their eigenvalues 
for the group invariants G and L 2 . This quantization is quasictassical by nature 
of its dynamical concerns. 

The main difference between the 0(4) and the SU(3) is that the group 
canonical transformations 0(4) function in such a way that the integral 
invariant 

3 

remains invariant. Thus the 0(4) group appears to be in this sense a group of 
dynamical symmetry of the arbitrary central problem. With respect to the 
Hamfltonian, however, the 0(4) is a group of brqken symmetry. 

In the Coulomb problem the Hamiltonian is expressed only by the integral 
invariants, and thus the 0(4) group is at the same time a symmetry group of 
the Hamiltonian. On the contrary, the group of canonical transformations 
SU(3) does not leave the integral invariant unchanged. (Note that the combi- 
nation J + Jr, where J is the integral invariant and Jr is the radial invariant, 
does remain unchanged.) 

Thus SU(3) is not a symmetry group in the general central problem in the 
above sense;SU(3) is generally a group of broken symmetry with respect to 
the Hamiltonian. In the oscillatory problem SU(3) is a symmetry group of the 
Hamiltonian, because H = (w/rO(J + Jr) and thus H is a function of G. The 
dependence o f H  = H(G, L 2) upon L 2 describes the way in which the symmetry 
is broken for a given potential and implies that not all of the generators of 
this group are integrals of the motion. 

In section 2 it is shown that the generators of this group in the case of  
arbitrary central motion must be nonconserving. Exact expressions of these 
generators are given and their dynamical properties are described. The con- 
struction of the SU(3) generators is traced in the Appendix. 

In section 3 we build the Casimir invariants. The energy spectrum is obtained 
and the SU(3)-multiplet structure of the energy spectrum is described. The 
quantization rules obtained appear to be quasiclassical and equivalent to the 
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Bohr-Sommerfeld quantization rules and to the ones which followed from the 
0(4) approach (Serebrennikov and Shabad, 1973). 

2. The Classical Nonconserving Generators o f  SU( 3 ) and their Unique 
Connection with Dynamics o f  the Motion 

Let us show that not all of the generators of SU(3) are integrals of the 
motion. All the generators (b e of the SU(3) group, where ~ = 1,2, 3 . . . . .  8, 
commute with the Casimir function (commutativity in the Poisson brackets 
sense) 

OG OG 
{G, q~} = 0-~ {L=' ~ )  + ~ {H, q~e} = 0 (2.1) 

Three generators ~5i, i = 1,2, 3, as they are at the same time generators of the 
S0(3) subgroup, commute with L 2 . However, the other five, not connected 
with the angular momentum, do not commute with L 2 . Thus, they do not 
commute with the Hamiltonian due to (2.1), i.e., they are not integrals of 
motion. 

A degenerate case ought to be distinguished when H(L 2, G) does not 
depend upon L. Then these generators are integrals of motion, as is clear from 
(2.1). It takes place in the oscillatory problem, where all five independent 
components of the symmetric tensor are conserved: 

Aij = rir] + PIP], SpAi] = 2H (2.2) 

The SU(3) symmetry of the Hamiltonian is broken in all other problems. 
Let us write down the nonconserving generators (they will be constructed 

in the Appendix): 

~ 4  = A 1 2 ,  ~ s  = A 1 3 ,  ~ 6  = A 2 3 ,  qb7 = ½ ( A l l  -- A 2 2 ) ,  q~8 = - ( N / ~ ) ( A 3 3  - f/3) 

(2.3) 

where AO, i , / =  1,2, 3, are components of the symmetric tensor. 

ri(r x L)] + ri(r x L)i (r x L)i(r x L)j +D3 (2.4) Ai i =D 1 fir] . D2 r2L 2 r 2 + r2L 

D 1 = -~-T- ( l f 2  _ L 2 ) 1 / 2  cos  2~ (2.5) 

Dz = i f +  (¼f2 _ L2)1/z cos 2~ (2.6) 

D3 = + (¼f 2 _ L2)1/2 sin 2~ (2.7) 

f 1-2FrZ( '2H-u-2V 1~ -t/2 
~= r 2 \ L 2 r~ ] dr (2.8) 

r, (H,L = ) ~1/0f 
F = - ~I~[~-H (2.9) 
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The function f is  the trace of the tensor (2.4). It is connected with the Casimir 
function by means of the relation 

f(H, L 2) = x/C3G = SpAq (2.10) 

and is given by the expression 

f(H, L 2) = 2(2,Jr/rr + x / ~ )  = (2/lr)(J + Jr) (2.11) 

where J is the integral invariant J = Jr + rr~/~ and Jr is the radial invariant 
rmax 

Jr = ~ [ 2 ( H -  V)r 2 - L 2 ]  1/2 d__r_r (2.12) 
r 

rmin 

The lower integration limit in (2.9) is in the classically accessible domain 
rmi n • r 1 K rma x. It fixes the initial direction of the principal axis of  the 
tensor (2.4). Aq with unknown f = f (H) ,  F = 0 becomes Fradkin's (1967) 
tensor. 

Let us adduce the properties of  the tensor Aq, according to which it has 
been constructed: 

(a) It is in the plane of the orbit: 

AijL i = AijL i = 0 (2.13) 

(b) It commutes with its trace: 

{SpAq, H} = 0 (2.14) 

(c) Its five independent components and three components of  the angular 
momentum form the SU(3) algebra (with respect to the Poisson brackets): 

{Li, LI} = e i jkLk  (2.15) 

(Aij,  Le) = eeinAnj  + eejnAni (2.16) 

{Aij ' Aem}= Ln(S ieen j  m + 8 imenj  e + 8jeeni m + 8jmeien)  (2.17) 

where eij k is the unit antisymmetric tensor; 6ik is the Cronecker symbol. 
(d) The eigenvectors A and A x L of  the tensor A 6 [see (2.19)] are directed, 

respectively, to the perihelion and apohelion of the orbit, whenever the position 
vector r passes them. (We choose r 1 = rmi n for definiteness). 

(e) It is isotropic in the plane of  motion for the circular trajectories. 
Other properties of  Aq are as follows: 
(f) In the oscillatory problem it turns into the known symmetric tensor 

which is an integral of  motion. It is not difficult to verify this by direct substi- 
tution of the oscillatory potential into (2.4), if r I = rmin- 

(g) The direct calculation of  the Poisson brackets for the A 6 tensor with 
the Hamiltonian gives 

{Aij, H} = 4gL(-~ff'2 _ L 2) 1/2 [Ai(A x L)/. + Aj (A x L)i] (2.18) 
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where 
r r x L  

A = --r cos ~ + r--L-- sin ~ (2.19) 

is the unit eigenvector of the tensor Aij. Vector (2.19) differs from the 
"generalized Runge-Lenz vector" determined in our previous paper (Serebren- 
nikov and Shabad, 1973) in values taken by F. 

Tensor Aij, when built according to (a), (b), and (c) alone, is not connected 
with the trajectory of the motion. It is determined by requirements (a), (b), 
and (c) in a nonunique way. The arbitrariness reduces to the choice of the 
functions f(L 2, H) = SpAii and the constant of integration q ( L  ~, H). 

The requirements (d) and (e) determine the function f (L 2, H) to be (2.11). 
(As for the phase r l ,  we recall that we have fixed it as rl = rm~a for convenience.) 

Let us consider the properties (d) and (e) in detail and get (2.11). 
To satisfy the condition (d) in the expression (2.8) is to demand that the 

coefficients D 1 , D2, D 3 (2,5)-(2.7) should take the same values each time the 
moving particle passes the perihelion (r = main). The condition (d) leads to the 
fact that the tensor Aq rests in the coordinate frame where the trajectory is 
closed. This frame rotates with the constant angular velocity F, according to 
(2.18) and (2.19). Taking into account the trigonometrical dependence of the 
D~, Da, D3 functions of the variable r, the condition (d) is written in the 
following way: 

2~(rmax) -- 2~(rmin) = rr (2.20) 

Let us consider the condition (e). There is no special direction in the plane 
of the orbit, when the latter is circular. That is why we demand the isotropy 
of the tensor Ai] in the plane of the orbit. To do this, let us decompose the 
tensor Ai] (2.4) into the products of its two orthonormal eigenvectors 
A, (A x L)/L, lying in the plane of motion 

(A x L)i(A x L)/ 
Ai]= C1AiA ] + C 2 L2 (2.21) 

where A is the vector (2.19). The eigenvalues 6] and C2 are given by the 
expressions 

C1 = l f g  X/(½f)2 _ L 2 (2.22) 

C2 = { f +  ~ / ( l f ) 2  _ L 2 (2.23)  

The third eigenvector is orthogonal to the plane of the motion and its corre- 
sponding eigenvalue is 0 and thus does not contribute to the decomposition 
(2.2t). Isotropy of the tensor in the plane of motion implies the equality of 
the eigenvalues (2.22) and (2.23). Thus 

lf2 ]H=H(LZ) = L 2 (2.24) 

The function H is given on the circular orbit parametrically 

1 r cl V(r)  cl V(r)  
H=-2 dr + V(r), L2 = r3 dr (2.25) 
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The condition (2.20) determines the function F(L 2, H), when the limits of 
the integration rmin, rmax are substituted into (2.8). The function f(L 2, H) 
is found from the solution of the first-order partial differential equation 
(2.9). The boundary condition (2.24) follows from property (e). The expression 
(2.11) is the solution for arbitrary central motion. The dependence of the 
function H(f, L 2) upon f, L 2 is given inexplicitly by 

Jr(H, L 2) = ½rr(½f - V ~ ) ,  f= ~ (2.26) 

It should be noted that the conditions (d) and (e) could be obtained formally, 
but there is no logical necessity to do so. 

3. Casimir Operators and Quantization 

The Casimir operators G~ and G3 of the SU(3) group are homogeneous 
polynomials of the generators of the second and the third order, respectively 

G2 = ~ @c~ 2 (3.1) 

where ~ are the standard generators of SU(3) with the commutation rela- 
tions 

[~a, %1 = i f ~ %  (3.3) 

Here d a ~  a n d f ~ r  are the well-known fully symmetrical and antisymmetrical 
structural constants, respectively. The eigenvalues of the operators (3.1) and 
(3.2) are the combinations of integers 

G2 = 4(n2 +q2 +nq +3n +3q) (3.4) 

G3 = -~(n - q)(2n + q + 3)(2q + n +3) (3.5) 

where n, q = 0, 1,2 . . . .  
Let us calculate the classical Casimir functions. To do this the generators 

Li, Aij taken in the standard form (2.3) are substituted into (3.1) and (3.2). 
Then we get 

= ( 3 . 6 )  

G 3 = 91-f 3 = ½ G 2 f  (3 .7 )  

Thus, owing to the orthogonality of the angular momentum and Ai], the 
Casimir functions G 2 and G3 are the second and third power of the trace of 
the tensor. This implies the multiplication of the eigenvalues of the operators 
G2 and f i n  G 3 (3.7). Therefore we have 

q = 0, f =  2n + 3 (3.8) 

It is convenient to take the quantities f, L2, L 3 as the complete set of the 
independent commuting integrals of motion. 

Let us take operators for the generators of SU(3) instead of the classical 
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expressions, as has been done for 0(4) by Serebrennikov and Shabad (1973). 
For the Hamiltonian H we postulate the same functional dependence on the 
operators f / £ 2 ,  as in the classical problem (2.26). We bear in mind that 
the operators land/~2 commute ~ i£2 ] = 0 and thusn 9 question arises con- 
cerning the ordering of them within the function H (f, L 2). Note that the 
resulting quantum dynamics is not, generally, equivalent to the usual one, 
when one takes the classical functional dependence It(r, p) = ½p2 + V(r) 
on the position r and momentum p for the quantum Hamiltonian function 
of the operators f and i6. The two quantum dynamics coincide only with 
quasiclassical accuracy. 

Let us take the states in which L 2, L 3 and fhave  definite values. The 
eigenvalues of L 3, L2, f are 

L31X~nlm = h m ~ n l m ,  

L2~nlm = h2l(l + 1), 

f~Pnlrn = h(2n + 3)~ntm, 

- l  ~< m ~< l (3.9) 

I 0, 2, 4 . . . .  , n 
l = (3.10) 

t l , 3 , 5  . . . . .  n 

n = 0, 1, 2 , . . .  (3 . t l )  

where (3.11" comes from (3.8). Then the eigenvalues of the Hamiltonian H 
will be the following: 

IYI(/£2,f)q~ntm =H(h2l(I + 1), h(2n + 3))q(ntm (3.12) 

since the Hamiltonian/I is given in terms o f L  2 and f,  and has a common system 
of eigenfunctions with them. These relations contain the quantization rules 

Jr(Enl, h2l(l + 1)) = ½rrh[n + ~ - X / ~  + 1)] (3.13) 

The integer n labels the SU(3) multiplet corresponding to the D(n, 0) represen- 
tation with the dimension ½(n + I) (n + 2). The functions '~mm (n is fixed) are its 
basis vectors. The dependence Ent(l) upon t (n = const) removes the degeneration 
within the multiplet, i.e., the energy levels split in the general case of the arbit- 
rary central problem. The quantum number n is connected with the radial 
quantum number nr in the following way: 

n = 2nr + l (3.14) 

These quantization rules are equivalent in fact to the Bohr-Sommerfeld 
quantization rules and to the ones obtained within the 0(4) approach. 

If we substitute the quantum number (3.14) into (3.13) and make the 
known quasiclassical replacement l(l + 1) -+ (l + ½)2 being expedient in some 
cases, we shall get the known expression for spectrum 

J~(Enz, z(t + 1)) = ~h(n~ + ½) 
The energy spectrum following from the 0(4) treatment may be obtained 

if we put the "hydrogenous" nhyd quantum number into (3.13) connected with 
the "oscillatory" one nosc by relation nosc = 2nhyd -- l -- 2. 
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4. Concluding Remarks 

The SU(3) group acts in the phase space of the arbitrary central problem, 
the symmetry of the Hamiltonian proving to be intrinsically broken. This is 
the essence of the approach. The generators of the SU(3) group are connected 
with the dynamics of the motion in a simple way. The set of these generators 
is sufficient to fix the trajectory of the arbitrary bounded motion. It allows 
us to perform the whole algebraic description of tile motion. The generalization 
of the results tbr n-dimensional and relativistic cases is not difficult, and the 
0(4) treatment of relativistic problems without spin is given by one of the present 
authors (Serebrennikov, 1974). The problem with noncentral potential may 
be described within the same group-theoretical scheme. 
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Appendix: Construction o f  the Nonconserving Generators o f  the 
SU(3 ) Group 

Let us introduce a symmetric tensor Aij in the most general form, taking 
into account (2.13): 

A i] = B 1 fir ] + Bzpip i + B3(rip j + r]pi) (A 1) 

SpAii = B1 r z + B2P 2 + 2B3 (rp) = f ( L  2, H) (A2) 

where B 1 , B z , B 3 are arbitrary functions of r, L 2 , H. To find the coefficients 
B1, B2, B 3 is to find the tensor A o. 

Let us require that the Poisson brackets of the tensor A 6 with its trace 
SpA i] = f (L 2 , H) disappear: 

{Aij, SpAi]} = 0 (A3) 

Equating the scalar coefficients at the independent tensors with zero, we have 

d V  1 OB 1 (rp) _ 0  
4F[BI(rp)+B3P2] - 2 B 3  ~ r  r + Or r 

0B 2 (rp) _ 0 (A4) 
4F[B2(rP) +B3r2] - 2B3 Or r 

0B 1 (rp) d V 1  +B1 + _ _  - 0  
2F[B2P2 - B f f Z ]  - B 2  ~r r Or r 

where 

F :  ~-~}/~-~ (A5) 
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Let us express the function B 1 in terms of B2 and B 3 according to (A2) 

B 1 = (1/r2)[f - Bzp 2 - 2B3(rp) ] (16) 

and make the substitution 

B 2 = rZD2/L 2 (A7) 

Then the set (A4) may be transformed to the second-order inhomogenous 
equation with respect to D2 : 

02D2 1 3D 2 da +D2 f (A8) 
a ~r2 + 2 Or dr = 2  

where 
(rp)2r 2 

a = 4L2( 1 _ 2Fr2)2 

A particular solution of equation (A8) without the right-hand side is the 
function 

A(L 2, t4) cos 2~ 

where 

(A9) 

then 

D 1 = ½ f -  (½f+A) cos 2~ 

D 2 = ~f+ (½f+A) cos 2~ 

D3 = - (½f + A)  sin 2~ 

(A12) 

r 

r~ 

A(L 2, 14) and r 1 (L 2 , H) are constants with respect to r. The choice of the 
constant r 1 is the choice of  the origin of the azimuth angle. 

The function 

D 2 = ½f+ (½f+A)cos  2~ (A10) 

is the general solution of (A8). The function A(L 2, H) in the expression (At0) 
is arbitrary function of L z, H. We may go from the functions B 1 , B2, B 3 to 
the functions D1, D2, D 3. 

BI = ~  D1 +D 2 L 2 

i,.2 
B2 = z2D2  (A11) 

B 3 = _ D 2 _ + 
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If one goes from the directions r, p to the mutually orthogonal ones r, r x L in 
the tensor (A1), then the functions D 1 , D2, D 3 are the coefficients by the unit 
tensors 

rir ] (r x L)i(r . ri(r x L)] + ri(r x L)i 
A i i =  D1--~- + D2 rzL2XL)L+D3 ..... r2N/-~2 

SpAi I=D 1 + D  z (A13) 

This form of  the tensor is more convenient. We determine the function A(L 2, 
H) from requirements (2 . t6 )  and (2.17). We give the function A without  
detailed computat ion:  

A + ½f= + ~/¼f2 _L-~ (A14) 

Then 

D1 = ½f% (¼f2 _ L2)1/2 cos 2~ 

D2 = ½f+_ (¼f2 _ L2)1/2 cos 2~ 

D 3 = -T- (~£f.2 _ L2)2 sin 2~ 

The procedure for uniquely determining function f (L  2, I1) is given in 
section 3. 

(A15) 
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